
_ /_ S_

N95- 25804

Control Theory and Splines,Applied to

Signature Storage

by

Per Enqvist

September 12, 1994



Abstract

In thisreport the problem we are going to study,isthe interpolationof a set

of points in the plane with the use of control theory. We willdiscover how

different systems generate different kinds of splines, cubic and exponential,

and investigate the effect that the different systems have on the tracking

problem. Actually we will see that the important parameters will be the two

eigenvalues of the control matrix.



CONTENTS

Contents

1 Introduction

2 Reachability

3 The System

4 Derivations

5 Boundary Conditions

5.1

7

8

5. °_

3

4

7

8

12

Known velocities at boundary .................. 13

5.1.1 Zero initial velocity .................... 14

5.1.2 Derivative approximation ................. 15

Constant velocity ......................... 16

Results 18

6.1 Four test curves .......................... 21

6.2 Applied on a signature ...................... 24

Resume - Summary in Swedish 26

Programs 21"

8.1 Matlab Program ......................... 27

8.2 Maple Program .......................... 41



LIST OF FIGURES

List of Figures

1 Example of bad boundary condition ............... 15

2 Cusp ................................. 18

3 Example of eigenva/ues effect on signature ............ 19

4 Example of eigenva/ues effect on control signals ......... 19

5 Circle ............................... 21

6 Absolute Value .......................... 21

7 Cycloid .............................. 23

8 Prolate Cycloid .......................... 23

9 Signature ............................. 25

10 Reproduction of signature .................... 25

List

1

2

3

4

of Tables

units of error for unit circle ................... 20

# units of error for y = [z[ ..................... 22

units of error for cycloid ..................... 22

units of error for prolate cycloid ................ 22



1 INTRODUCTION

1 Introduction

I would like to be_n by thanking my advisor Pr. Anders Lindquist for

initiatin_ contact with Texas Tech. I would also like to thank Pr. Clyde F.

Martin for being my advisor a: Texas Tech.

In this report we will look at a way to store si_'natures. We want to

do this by storing only a minimal amount of points on the sig'na:ure curve,

and still be able co reconstruct the curve by interpolating these points. The

interpolation will be performed by splines, and we will look at the common

splines-problem from the control theory point of view. We can construct a

trajectory of a system tha: passes through a specified set of points, and thus

interpolate the poin:s.

Two questions that need to be answered arise. First, when is it possible

for :he system to pass through the points? Second, when there are many

ways to accomplish that, what sort of conditions should we demand that :he

system fulfill in order that we get a unique solution.

The question of when i: is possible to interpola:e the points will be an-

swered in the general case in section 2 t_etzc,_abilit'4 and for our particular

system in section 3 The System.

An algorithm to find the solution is developed in section 4 De_'ations.

The choice of boundary conditions is discussed in section 5 Boundavj

conditions.

In section 6 Results the results of tests done upon parametric curves are

displayed and discussed.

A summary in Swedish is provided in section 7 Resurnd - Summary in

Swedish.

The programs I have been using are included in section 8 Programs. In-

cluded among the Matla6 programs is an altered version of the ori_nal Mat-

lab progam quadS.

When we have answered the two questions, we have to decide what kind

of system we will use for the interpolation. We can easily imagine that we

would get to completely different curves if we asked a pedestrian to walk

through a set of points and if we asked a cyclist to ride his bike through the

same points. In the first case we would get (if we suppose that man is lazy),

linear interpolation, and in the second case we would get a smooth rounded

curve. This is the same as in our case where we have exponential and cubic

parametric splines.



2 REACHABILITY 4

2 Reachability

In this section we will determine under what circumstances it is possible to

take a time invariant linear system from a point Xo at time to to a point xl

at time tl. It is a vital property to us, because, in order to interpolate we

have to be able to pass through the points. We will call a system completely

rea_chable if it has the property that this can be done in any positive time

for any two points.

This is a classical control theory question, and it is answered by the

following well known theorem, which was at least implicitly discovered by

Kalman.

Theorem 2.1 Suppose that the system below is given,

._ = Ax+Bu
y=Cx

(2.1)

where A is n x n and B is n x k. Then it is completely reachable iff F

[B, AB, A:B,..., A'_-IB], is full rank.

In order to prove this and understand how the teachability concept can be

characterized by the matrix F, we will have to look at the general solution

of equation 2.1.

£x(t) = eA('-t°)xo + eA(t-')Bu_,(s)ds (2.2)

In order to have the desired state xl at time tl the following equality must

be satisfied.

f,xt = eA(q-'°)xo + ea(q-')Buk(s) ds (2.3)

The question of reachability is now easily seen to be the question of whether

there axe any solutions to the mapping L : N _ R" such that

Lu _ _1= eA(tt-')Bu(s)ds = xl -- ea(tt-t°)Xo a d (2.4)

Since we recognize L as a linear operator, it is as always very fruitful to use

a theorem from the general theory of functional analysis [4, p.250].



2 REACHABILITY 5

Theorem 2.2 If X, Y are complete inner-product spaces and A:X _-* Y is

a linear continuous operator then

:lmA = :rmAA"

We know that R '_ is a Hilbert space, but we have to look at wha_ kind of

space h' is. We choose to introduce the following inner product for N

(u. ,. ). u( t )',.( t

and it can be checked that U becomes a Hilbert space. We know that there

is a azljoint operator L" : R"_---, U such that

(d, Lu)R- = (L'd,u)u

and we get the adjoint L" of the mapping L through this equation

(d, Lu)a_ = d'/_t ea(tz-')Bu(s)ds
d tO

= _-(L'd,u).

We thus have a linear mapping W _= LL" : R_R ", that is, it is actually

only a matrix operator.

= LL" = eA(tI-')BB'eA'(t'-')ds

With only the basic knowledge about matrices we will now be able to prove

the following leman

Lemma2.1 Let A be n x n and B be n x k. Then, for all to, tl such that

to < tl we have

2mW(to, t,) = 3m [B, AB, A_B,...,A'-'B]

Proof: We will do this by showing that :ImP _C 3'roW and 2roW C :IMP.

[:rmr _c2roW]



2 R.EACHABILITY 6

Let a E ._:W, which implies that 0 = a_Wa = f_ a'eA(q-_)BB '_A'(q-')ads,

i.e.

_l B,eA,(tt_,) a ds = 0

from which it follows that

B_e'4'(:z-')a ---- O, w _ [to,_1],

i.e_

o.
i_=0 •

This implies that [B, .4B, A_B,..., ,4"-lB]'a = 0. That is, for an arbitrary

a E ._e_I,V we have a E ._z_:F' which implies that _I,V C ._e_:F' and by a

theorem from fundamental algebra thisequals_mF _C:YmW.

[_raW c__mF]
Suppose a E _mW. Then there exists a x E R '_ such that a = Wx, and

hence

a = __, A'iB tl - s)iB'ea'(_-'txds
j=O "

from which it is obvious that a E 21m[B,,4/?,A2B,...] and by Cayley-

Hamiltons theorem that a E _IrnF, which concludes the proof. []

The main theorem of this section will follow a.s a direct consequence of

the lemma.

Proof:[Theorem 2.1] By lemma 2.1, Xl--eA(t'-_°)Xo A d E R" and _mF = R"

implies complete reachability.Cl



3 THE SYSTEM 7

3 The System

We will consider the system with the state and dynamics Even by

X "-

2_

7

y x = Ax+Bu
y = Cx

where

(3.5)

i0100//°°/ 0 A1 cq a2 1 0 1 0 0
A= ,B= ,C=

0 0 0 1 0 0 0 0 1

_1 #o. 0 ,\2 0 1

This _ves us the property

y=Cx= ( z)y

and the system dynamics will look like

And it _ves us the following F

AI:_ + aly + a=# + ul

A=_ + 31z + fl=_: + u2

where

0 0 i 0 Ax

oo o i #:

0 1 #: A: #i+#_(AieA:)

o)0

a: Fl,r Fl,s

al + a:(A1 + A:) F:,r F:,s

A: F3,r F3,s

a=_2 + A_ F4,'r F4,s

(3.6)

(3.7)



4 DERIVATIONS 8

i"1. 7 = (3_2_0 "

Fi,s = al +

r:,,- = aI,32

r3.= = /31+

r3.s= a:3:

r4,s = alg:

a:(A1 + ,\:)

+ a:,& + c:J:(2kl + ),:) + Aa

5:(,h+ ,\2)

+ e=i31+ a:,&(,h + 2,\:)+ A_

As r is easily seen to have full row rank, by simply looking at the first four

cohmms. The class of systems we axe going to consider in this article will all

have the desired property of complete reachability, by Theorem '2..1.

4 Derivations

Given a set of points in the plane {(z0, yo),(z,,yx),...,(z,,y,_)} and the

corresponding time points {to, fl,..., L,} we would like to find the control

functions {Uo, ut,..., u,-t } that. takes the system through the points at the

specified times.

Let's study the control u_ : t_ t_+l

As t E [t_, tk+l] the state of the system will be

_tx(t) = ea('-'}x_, + eA('-')Bu_(s)ds (4.s)

and as we want the state of the system to be xa+l at time t_+t we get the

following condition.

fth+lX,_+l = eA(t"+'-t"lx,_ + eA(t'+'-')Buk(s) da
dr,%

(4.9)



4 DERIVATIONS 9

The solution u_ to equation 4.9 that minimizes the norm of the control

signal is then Even by

u,/,): ,, _A,,..(f"",, - (.,.,o)
The control would be specified completely by equation 4.10 if we knew the

whole state-vector at each interpolation point. We know M1 (z_, yk) but we

do not know the (_, #_). To determine the 2(n + 1) unknowns we have to

apply some conditions on the solution, and our first; choice will be to require

that the control is continuous,

Assumption 4.1

= b=0...n-2

This will Eve us 2(n - i) conditions and wiI1 leave only four unknowns. W'e

will apply the additional conditions on the boundary and we will have to

come back to this in section 5 Boundary Conditions.

In many applications it is just the shape of the trajectory that matters.

and not the velocity that the system tracks the trajectory with. In these

cases it makes it much easier to assume that the time between each point is

a constant.

Assumption 4.2 Let t_+, - t_ = h.

Assumption 4.2 can be used to simplify the integral in equation 4.10.

Definition 4.1

e_÷, e_a, BB,eZa,,ds = {r = s - t_} =

e-At_
fo a e-Ar B B'e-A' r d7 " e-A't_

,J

nta_rixcanjtart$

fOh
M =A e_ArBB,e_A,rd_.



4 DERLVATIONS 10

We can now rewrite expression 4.10 as

u_(t) = B'e-a'('-*k)M-l(e-ahx_+l - x_) (4.1I)

Using this expression we will now investigate how the continuity condition

in assumption 4.1 looks.

u_(t_+l) = B'e-A'hM-I(e-Ahxk+I -- Xk) =

B'M-l(e-'°'xk+2 - x_+l) = u_+l(t_+l)

We can rewrite this condition using

Definition 4.2

Z --t' M_le_Ah

W =_" e-A'hi_l-le -Ah "b M -1

_ving the equation the simple form

B' (Z'xk - Wx_+l + Zx_+2) = 0,

In block diagonal form

k=O...n-2 (4.!2)

e

Z' -W Z ... 0

0 Z' -W ... 0

: : : ".. :

0 0 0 .... -W

0 0 0 ... Z'

0 0

0 0

: :

Z 0

-W Z

xo

X1

X2

X_-2

X_-I

X_

=o (4.13)

Now, we have to look at what the unknowns are. The vector in equation 4.13

is made up of subvectors

xk

_k
Xk "--

Yk

f/k

v



4 DERIVATIONS ii

consisting of two knowns and two unknowns. By partitioning the submatrixes

W, Zas

W = W'l W'2 W-3 _.4 ,Z= Z-1 Z.2 Z-3 Z.4

: • . .

0 ° •

• ° .

., •

.•°

Z I ....

-'2 ....

23 ....

Z 4 ....

and using the notations _ven in the following the definition, we can keep

the uakaowas on the left side aad move the position coordinates over to the

right hand side.

Definition 4.3

w/B ._ zv.2 w.4 =B'
tU42 ?'/244

W41 W43

z-31-[  1z,1z,3z 3]
Zff z2. _.22 z42B'

Z4. Z24 Z44

[]'[ ]Z3. Z14 Z34



5 BO UNDARY CONDITIONS 12

And we get the system

z,f-w; z_ ... o o o
o z,f -wy ... o o o
: : : ".. : : :

0 0 0 •.• -w, s zt_ 0
o o o ..• z,f -w? z,_

zZ -w; zy_ .•• o o o
o z2 -w; •.. o o o
: : : ".• : : :

o o o •.•-wy z;_ o
o o o .• z_ -w? z;_

' ..ue_ *

"'0

°. u_._

ue_

)n-2

:_ n-1

° . I_ ¢[i

• "_rl

• X_ O0 "

pos

X 1
po$

X2

po$
Xn-2

po$

Xr_-I

xPom

As we evaluate the right hand side, we get a constant vector• Depending

on what kind of boundary conditions we choose to use, the derivations differ

from here. We wiLl deal with the most common cases, each case in turn,

be#nning in the next chapter.

5 Boundary Conditions

In order to get a unique solution to our problem, we had to apply the con-

tinuity condition and the boundary conditions. The continuity condition is

a rather natural condition, but the boundary conditions have to be studied

more extensively. The four most common choices of boundary conditions in

the one dimensional case according to [2] aze

1. Zero velocity at the first and at the last point.

2. Specified starting and ending direction•

3. Natural boundary conditions, y" = 0.

4. Periodical conditions.



5 BOUNDARY CONDITIONS 13

We will look at how the two dimensional equivalent of choice number I

and 2 affect the curves, and for which the same derivation is valid.

Item 3:s two dimensional equivalent, _ = _ = 0, requires a derivation and
will be studied in subsection 5.2.

We will avoid dealing with condition 4 as it only complicates the calcula-

tions, and would only be natural and interesting if we were to write the same

word twice, connected with itself as RogerRoger.

Because the effect of the boundary, conditions are similar at both botmd-

a.v:es we will restrict ourselves to only talking about the starting point.

5.1 Known velocities at boundary

Vv'e have assumed that we also know x_ *l and x,_-.,l. Moving these over to the

right hand side, we get a block diagonal matrix system to solve.

Where

-w? z_ ... o o
z# __SB ... o o

: : ".. : :

o o ... -w, _ z_
o o ... z# -w/

xf' " fll
x_"t f12

. °

n--2

red _"_n- I

(s.14)

B ,o, Z#_"n_ -Z_xo _'" + w; xl a _,= -- Z, ux 2 -

B. po_ zB Xm*fir = -Z_x_°_:,+ w; ,._ - ,, _+1

_'_n--1 _BXpO$ WBvpo$ rtB pos 7B. vel-" --_rl n-2 2f- ,, r _'n--I -- _rttXn -- _l="¢"n

This can easily be solved, and with a linear increase of time. Having solved

the system above we now know all the states of the system in the interpolation

points. We will now use equation 4.11 for the control, and insert it into

equation 4.8 to get the trajectory.

fO t-tkX(*) -- eA(t-t" (Xk 2t- e-A'rBSte--A"rdTM-l(e-Ahxk+l Xk))

fork = O...n-1

t _ [t_,t_+,] (5.15)



5 BOUNDARY CONDITIONS 14

As we can see from equation 5.15 the fundamental matrix and the integral

is the same for all k azid only has to be evaluated for t - _ between 0 and h,
once azid for all.

5.1.1 Zero initial velocity

We caxi choose to set

Assumption 5.1

With this condition, we will let the system start up in whatever direction

tha_ minimizes the energy norm of the control sisal and takes the system

to the second point.

As we know from one dimensional control theory, a system with a transfer

func:ion with zeros in the numerator will start off in the opposite direction

to where it is going. Such undesired properties should certainly be avoided in

our tracking problem. La the case where c_ = c_2 = 31 = 3= = 0, the states

x and y are independent, yielding two one dimensional transfer functions. It

is easily seen to have no zeros, which is good.

Otherwise, we will have to look at the two dimensional transfer function

_ven below:

1
r(s) = x

This is a bit more tricky, and we will have to find the Q and D of least degree

that is a solution to the equation

= (5.17)

and satisfies

X(s)Q(s) + Y(s)D(s) = I (5.is)



5 BOUNDARY CONDITIONS 15

It is easy to verify that the choice

= r,

is a solution to equation 5.17, and there e_sts X(s) and Y(s) so that equa-

tion 5.18 is satisfied. From Q(s) we can see that the system has no zeros.

The zero initial conditions should thus not _ve us any problems.

5.1.2 Derivative approximation

Instead of setting the velocity equal to zero, another alternative is of course to

specify a starting velocity. However, this requires that we make a good choice,

to avoid situations as exemplified below. Using a bad direction and a high

velocity boundary condition on y = z °', we get the gaph of fio_.re 1. Even

as we are using n=40 to reproduce the curve, the b_ boundary conditions

are still ruining the tr_cking.

1.2

I

0.6

0.$

0.4

a2

-1.$ 115

•.'. .?
•. ."

- /

- i

-1 .._.S 0 0.5 I

Figure 1: Trajectory of system tracking y = z:, with badly specified starting

direction

As discussed in [3, p.86], the fact is that when we set the boundary

conditions in the para:netric case, we do not only specify a direction, but

also the speed in that direction. The greater the speed, the greater impact



5 BOUNDARY CONDITIONS 16

the boundary conditions will have on the solution. We are thus forced to

make a good choice, and we would like the choice to get better the more

interpolation points we are using. A simple choice that satisfies this is

Assumption 5.2

Xt --Xo

(_0,_0) --
h

X,_ -- Xn-i
(_.,_) -

fi

which imply that we wiLl set off from the first point in the direction of the

second point, and arrive at the last point in the direction from the ne_ last

point.

Another way of deciding the initial velocity would be to use the same

technic a.s in Bezier curves and choose ;he settings gaphically. This would

probably be the best way to get the desired properties of the signatures. As

discussed in [3] the choice of boundary conditions will aEect the whole curve,

and the solving of the blockdiagonal system must be done over from scratch,

making this method a bit slow. If we are going to do this only once to store

a signature it does not matter. What matters with this method is that it

adds four more parameters to be stored, and we could probably get equally

good results just by increasing the number of interpolation points by two.

5.2 Constant velocity

Suppose we want to use the boundary conditions

Assumption 5.3

(_0, _o) = 0

(_,_) = o

This will let the initial direction and constant velocity of the system be

decided so that the control energy" is minimized. Using the system dynamics

equations 3.7, we get the equation system below.



5 BOUNDARY CONDITIONS i7

where

Z2 A_ yo +uo(O)=- 3lzo

Uo(0) = B'M-l(_-_x_-xo)
= B'Zxl - B'M-lxo

Now, by using partitioned matrixes as in section 4 and the following defini-

tion,

[ 1] ]Definition 5.1 Ut_, _a m_# rn__4 U_= _a rn41 t

we get the system

ll a2 -Ut_ Xo +_i_x{ =

In a similar way we get the equation at the other boundary.

-- Xrt _11 Xn-1+W_s Ul_ - =

( [0 _]) _'°" + z'x_--'_=u_-w2-_ o -"

(5.2-,_)

(5.23)

Adding these two equations to equation 4.14 yields a blockdiagonal system

to solve. This system is two blocks bigger than the one in section 5.1, but it

can also be solved with a linear increase of time. And once it is solved, we

can still use equation 5.15.

A comparison between the three boundary conditions, BC=I zero initial

velocity, BC=2 derivative approximation, and BC=3 zero initial acceleration

is made in section 6.



6 RESULTS
18

6 Results

The first tests with the algorithm were done with matrices A with both

eigenvalues equal to zero, A1 = 0, As = 0, and _1 = as = /31 = f12 = 0.

This produces cubic parametric splines, and makes the calculation of the

fundamental matrix easy. The cubic splines produce smooth curves, but were

also able to reconstruct a cusp much better than you would have guessed at

first, as shown in figure 2.

0,9

O,a

0.7

0.6

05

0,4

0.3

0,2

0,1

0
-1

/"\
o.*"

%"°°°..° °
°°°°

• .°°'°

°°'°°%° .°.°J°

"%. °,.°

• #

".% ..."

2

Figure 2: Reconstruction of y = z5 with cubic parametric splines where

n=10.

If we look at the function y = z_ we know that this function describes a

cusp. But if we parameterized it like z = t 3, y = t 2 we see that both x and

y are smooth cubic functions of t, so it is not very remarkable that it can be

reconstructed well.

When we used A-matrices with nonzero eigenvalues, and decoupled z

and y coordinates, i.e. _1 = c_2 = /31 = /32 = 0, we were able to generate

exponential parametric splines with the basis functions 1, Alt, e"ht, e -'x_ and

1, A=t, e"_2t,e -'_=t for the z and y coordinates.

The result of taking big eigenvalues is almost linear interpolation, which

can be good for certain applications, but not if it is to be used for storing

signatures. It is quite obvious that the roundness of a persons signature is

one important factor of it's characteristics. Therefore, it's vital that one of



6 RESULTS 19

Figure 3: Graph of signature Per, reproduced with A1 = 1, A2 = 1 in the left

figure, and A1 = 100, ,\_. = 100 in the right

S_

"1_0 02 0.4 O.S O_ 1 1-2 1.4 t. _t 1,J z
0 02 OA 0.| OJL 1 l&t 1.4 1.6 11 2

"10_0 0.2 0.4 0.4 OJI I 1.2 1.4 t.| *.J Z

2_0

0 02 04 O| On _/ 1.2 14

Figure 4: Graph of control signals in figure above.



6 RESULTS 2O

data stored on the si_ature is the eigenvalues of the A-matrix, as can be

shown in figure 3.

Figure 4 shows the corresponding control signa/s. In the ,\1 = 1, A2 = 1
case the linear part of the control is dominating, and in the ,\1 = 100, A= =

100 case the ex-ponential part is dominating. It is a/so evident that the

magnitude of the control signals is _eater in the case of Iarger eigenvalues,

but that is not a problem for our fictitious system.

In the case of nonzero al,c_,.,gl,/3,, we get a coupling between the z

and 5' coordinates. This will give us very complicated basis functions, like

polynomials times exponentials times sine- and cosine-functions.

As with all approximation methods one should a/ways investigate how big
the errors are. To do this we had to somehow determine the distance between

the ori_nal curve and the interpolating one. The tests were peHormed on

known parametric curves, so we had an explicit expression for the points on

the originM curve. We had to try to find the nearest point on the original.

curve to the point on the trajectory. This was solved numerically with the

"Golden Intersec'Aon algorithm" . For the method to work we have to assume

two tings •

1. The section of the original curve between the two interpolation points

nearest in time is convex.

2. The point on the original curve nearest the point on the interpolating

curve ties on the section in item 1.

As an error estimate I have calculated the distance between a number of

points on the reproduced curve and the original curve and divided with the

number of points. We have applied this error estimate method on four dif-

ferent curves and with different number of interpolation points and 40 points

between each of these.

points

n=10

n=20

n --' 100

BC = I BC = 2 BC = 3

6671.1 5821.1 4515.9

1028.4 765.6 502.1

8.8 5.9 3.5

Table 1: ,u units of error for unit circte.



6 RESULTS 21

Figure 5: Graph of circle, reproduced with n=10 and ),1 = 10, A= = 10,

BC=1,2,3

O.1

0.(

0.31

I

-!

6.1 Four test curves

The fn'st curve we tested was the unit circle. This very round curve was

tracked best by the cubic splines, but the exponential splines did a good job

too, _ can be seen in figure 5 and table 1. We can also see that the error

was smallest in the case of zero initial acceleration boundary conditions.

11

O.i

0.8

_L7

O.4

0.5

0.4

0.3

0,2

0.1

-OJ --_6 .-_4 -_2 0 _L2 eL4 0 6 0 a

v • ' ' '

•._8 .-05 .,=.4 -_1,2 0 0.2 0.4 0.$ Oa

Figure 6: Graph of y = [z[, reproduced with n=10, n=20 and A1 = 10, A= =

10, BC=2

Next, we looked at a curve with the opposite properties, linear and non-

differentiab!e, y = Izl. The error is mainly located between the two points



6 RESULTS 22

points BC = 1 BC- 2 BC = 3

n = 10 3450.3 3446.8 3450.3

n = 20 972.6 972.6 972.6

n = I00 40.7 40.7 40.7

TaMe '2: p units of error for y = Ixl.

next to the non-differentiable point. As could be guessed the tracking of

the curve y = ]z I got better the bigger the eigenvalues of the A matrix

were, the error was reduced to 142 # units for ,\1 = 12 = 500 in the case of

BC = 1 and n = 10. but for bigger values the numerical calculations failed.

Using negative eigenvMues _ves the same error as the positive, which can be

expec',ed since we have a symmetric curve and time interval and by looking
at the basis functions. The results with different boundary conditions were

very much alike, as seen in table 2.

This was the only case were BC :3 did not _ve us the smallest error.

Can we get a smaller error wi_h any choice of the coupling paraxneters?

Yes, for example by choosing al = -a2 = ,3i = -3-. = 10, we get the

error 3249 # units for n=10. Choosing these parameters could thus be a way

to reduce the error, but by using n = 12 instead, we got the error 2506 /_

units. So we do not get a more efficient way to store it, unless we can find

parameters so we get below 2506 # units.

points i BC = I BC = 2 BC = 3

n = 10 6506.6 5313.7 3842.9

n = 20 1014.4 725.4 460.9

n = 100 8.8 5.8 3.4

Table 3: # units of error for cycloid.

points BC = 1 BC = 2 BC = 3

n = 10 13897.6 11664.8 8867.6

n = 20 2100.5 1531.0 1001.7

n = 100 17.7 11.8 7.0

Table 4: # units of error for prolate cycloid.



6 RESULTS 23

'[
1.$

t.$

1.4

12

1

O.8

0,.8

0.4

0.2:

--,3 -2 -1 0 1 2 3

:E
t$P

1.2

0.8

0._;

¢4i

0.t

-3 -2 - I 0 t 2

Figure 7: Graph of cycloid, BC= 2, reproduced with n=10, n=100 and

AI =IO, A2=IO

3

0

-I
-4 ..I -2 -I 0 i 2 3 4

i 1
-_ -2 -1 0 1 2 3 4

Figure 8: Graph of prolate cycloid, BC= 2, reproduced with n=10, n=100

and A_ = IO,A_ = I0



6 RESULTS 24

Finally we look at a cycloid.

x - ,vt-sin,vty = 1-cos,-rt

and a prolate cycloid.

- = _,t Osin_t= l-°cos,_t

It isevident that the cusp and the crossoverdo not cause any problem, as

could be expected since we are using a parameterized interpolant.

l\,'ecan compare the differenceof the graphs in figure. and fi_o-ure8,

where we are using one crade approximation with n=lO and one extensive

approximation with n=lO0. This time itisevident that the e_or ismainly

located at the boundaries. In table .3and table 4 we can see _hat the best

resultscame from using constant velocityboundary conditions.

Loo kin$ at table 3 and table 4 again,we see that the errordecreasesat

an approximately cubic rate as the number of interpolationpointsincrease,

which ismuch betterthan the quadratic decreasethat can be seen in tableo.

My guess isthat thisbehavior comes from the fact_hat the curve y = ix!

does not have a diferentiableparameteriza_ion.

6.2 Applied on a signature

Included as figure 9 is a scanned picture of my own sig-nature. I have tried

to pick some roughly equidistant points on the signature, (According to the

scale indicated on the axis.) and used the interpolation algorithm we have

been studying to reproduce it. The reproduction is made with n = 74,

,\_ = A_ - 10 and no coupling between the two coordinates. For boundary,

conditions I have chosen to use constant velocity, since it has been the most

successful condition.

.-ks can be seen we get a very close resemblance between the original and

the reproduction. How close is hard to say because we do not have the

sig-nature given as a parameterized function, therefore we are not able to
calculate the error as before.

The things characterizing the sig-natures, are also the things that are hard

to recover with the interpolation. Such as the turnover in the connection from

the "P", and the cusps in the "r'. To get a good reproduction, an equidistant



6 RESULTS
2G

Figure 9: The scanned sio_aature

5 10 1 25 30

Fig-_reI0: The reproduced signature



7 R.ESUMI_, - SUMMARY Ifv" SWEDISH 26

distribution of the interpolation points is not enough, more points has to be

concentrated around the characterizing areas.

7 Resum@- Summary in Swedish

LaTring av signaturer kan g6ras p& m_nga s_itt. Vi hat valt art lagra ett antal

punkter p& signa_uren, och sedan reproducera denna genom art interpolera

punkterna reed splines.

Genom artanvgnda vZ_kiindaresulta¢inom systemteoris& kan man gener-

era olikasorterssplinesgenom art _indrap& n_gra parametrar. Jag har n?_t-

jar derma metod fSrart generera parametriserade splinesiplanet. Man inset

start art man m_,steinfdrarand_illkorp& 16sningen.och valetav dessa f_

inte ske htLrsore he_t eftersom de p&verka¢ hela 16snmgen. D/_,-fSrhat jag

lag¢ net en hel del acbete jus_ p& derma punkt. De bgsta resultetenhat jag

erh&llltgenom vale_art ha konstant hastighe__dd indounkterna.

En av de saker sore karaktiriserarhandstilar_irdessrundhet. Derma kan

ges en direkt6vers_ittningiegenvilrdena tillsystemmatrisen, och vi kommer

allts&v/ljaart lagra dessa ut6ver punkterna p_ sig-naturen.



8 PROGRAMS 27

8 Programs

The programs in Matlab and Maple _ha_ were used to implement the algo-

rithm developed in thisreport follow.

8.1 Nlatlab Program

To make it easier to tmders_and the structure of _he progam, the following

flow charts describe how the progams are traversed.

nm(BC,nn) ] Et'a_uates the parameteHzed function in an points.

o I ,I points(nn) 2CX(nn) Y'Y(nn) ]

Applies the algorithm on the points in R.

r aig(R,xvet0.._'eLa) or alg2(R) ]
• [ " , ,

alg, alg2 Evaluates the matriz integral M.

•[ quadSmod(int) _--_[quad8stpmod(in_)]
J 4 I

Evaluates an error estimate.

o J disc _ helpdist ]I

The loops marked with an unfilled circle is only available when the inter-

polated points are _ven by the parameterized ftmc_ion (XX(t),Y'Y(t)).



8 PROGRAMS 28

function error=run(BC,nn) ;

%BC % Type of boundary conditions

% 1 = zero initial and final velocity.

Y, 2 = heading for first point, last.

% 3 = zero initial and final acceleration.

% If nn is specified, runs alg with nn points given by XX,YY.

% Otherwise runs alg with points given by ginput.

global n h alphal alpha2 betal beta2 lambdal lambda2

global errorcalc ctrlsignal

clg

%% Setting of parameters

alphal=O ;

a!pha2=O ;

betal=O;

beta2=O ;

lambdal=lO ;

lambda2=lO ;

%%

% Decides what steps are going co be made

errorcalc=l; % error estimation

c_r!sio_nal=O; % plotting of control signals

if nargin == 1

[x,y]=ginput;

K(l,:)=x'; B(2,:)=y';

else

K=points(nn);

end;

n=leng_h(R)-l;

h=2/n;

% Number of interpolationpoints -i.

% Time inbetween points

%% Plots a circle at all the points thats interpolated %%

hold on

for i=l:n+l



8 PROGI:L4MS 29

piot(R(1,i),R(2,i),'o')

end;

%% Calling aig with :he prepared data %%

if BC == 3

error=a!g2(K);

else

if BC == 2, xve!0=(_(:,2)-R(:,!))/h;

else xve!0=zeros(2,!);

end;

if BC == 2, xveln=(h(:,n+l)-R(:,n))/h;

else xveln=zeros(2,1);

end;

error=alg(R,xvel0, _:eln);

end;

%5_ Looo to allow graphic alteration of BC. %Z

b=input('"l" for graphic mod of BC, "0" to quit ');

while b == I,

xvel0=10*(ginput(1)'-K(:,l));

xveln=-10*(ginput(1)'-K(:,n+l));

clg

hold on

for i=l:n+l

plot(R(l,i),K(2,i),'o')

end;

error=alg(R,xvel0,xveln);

b=input('"l" for graphic mod of BC, "0" to quit ');

end;

end;

function R=points(nn);

Forms K with the help of XX, YY.





8 PROGR.,4:_,fS

% R = 2*(nn+l)-matrix.

global a b h

at! ; b=a;

h=2/nn;

for i = O:nn

R(:,i+l)=[XX(-l+i,h); YY(-l+i*h)];

end

end;

30

f"_nction res=XX(=);

global a b

rest a*z*pi-b*sin(Z*pi);

end;

function res=YY(=)

global a b

rest a-b*cos(t,pi);

end;

function error=alg(R,xvelO,xveln);

% R = Matrix of inzerpolationpoinzs, xO ... xn.

% first row = x-coordinates, second row = y-coordinates.

xvelO, xveln = Boundary conditions

global a b A B C n h alphal alpha2 beta! beta2 lambdal lambda2

global errorcalc ctrlsignal

%% The System %%

A=[[ 0 1 00]

[ 0 lambdal alphal alpha2]



8 PROGRAMS 31

[o o oi]
[ betal beta2 0 lambda2]] ;

B=[[O O]
El o]
[o o]

[o !]];
c=[[_ o o o]

[o o I o]];

%% Calculation of the integral from 0 to h in m steps %%

m=40; Z number of points between interpolationpoinzs

toi=le-08; Z the numeric error zolerznce

Mtau(:,l:4)=zeros(4);

_au=O;

for ]=l:m

oldtau=tau;

tau=oldtau+h/m;

Mtau(. 4.j+l:4.j+4)= quadSmod('int',oldtau,_au,tol)

+ Mtau(:,4*j-3:4*j);

end;

M=Mzau(:,4*m+l:4*m+4);

%% Forming of the Matrixes for the Blockdiagonal system %%

e_Ah=expm(-A*h);

Minv=inv(M);

ZZ=Minv*e_Ah;

WW=e_Ah'*ZZ+Minv;

WL=[WW(2,2) WW(2,4); WW(4,2) WW(4,4)];

ZLU=[ZZ(2,2) ZZ(2,4); ZZ(4,2) ZZ(4,4)];

ZLL=[ZZ(2,2) ZZ(4,2); ZZ(2,4) ZZ(4,4)];

% Pmrtitioning matrixes

WK=[WW(2,1) WW(2,3); WW(4,1) W'W(4,3)];

ZRU=[ZZ(2,1) ZZ(2,3); ZZ(4,1) ZZ(4,3)];

ZRL=[ZZ(1,2) ZZ(3,2); ZZ(1,4) ZZ(3,4)];



8 PROGtL4MS 32

%% The boundary conditions %%

xvel (:,I)=xvelO ;

xvel (:,n+l )=xve in;

%% Forming of the right side of the Blockdiagonal syszem %%

for i=2:n

Qmega(:,i)=ZKL.K(:,i-I)-WI_*K(:,i)+_U*R(:,i÷I);

end;

Omega(:,2)=Omega(:,2)+ZLL*xvel(:,l);

Omega(:,n)=Omega(:,n)+ZLU*xvel(:,n+l);

Z% Gausselimination to produce upper triangular system %%

DD(:,3:4)=WL;

for i=3:n

zd=ZLL*inv(DD(:,2*i-3:2*i-2));

DD(:,2_i-I:2.i)=WL-zd*ZLU;

Omega(:,i)=Omega(:,i)+zd*Omega(:,i-l);

end

%% Backsubstitution to solve for the xvel _%

xvel(:,n)=DD(:,2*n-l:2*n)\Smega(:,n);

for i=n-l:-l:2

xvel(:,i)=DD(:,2*i-l:2*i)\(ZLU*xvel(:,i+l)+Omega(:,i));

end;

%% Making of state vectors %%

for i=O:n

x( :,i+l)=[[_(I,i+l)]

[xvel (I,i+l) ]

[R(2,i+l)]

[xvel(2, i+l)] ] ;



8 PROGtL4MS 34

function error=alg2(K);

% R = Matrix of interpo!ationpoinZs, xO ... xn.

% first row = x-coordinates, second row = y-coordinates.

% BC = acceleration in x and y direction are both = O.

global a b A B C n h a!pha! alpha2 betal beta2 lambdal !ambda2

global errorca!c ctr!signa!

%% The System Z%

A:[[ 0 1 o o]

[ 0 lambdal alphal a!pha2]

[0 0 0 I]

[ beta1 beta2 0 lambda2]] ;

_:[[o o]

[i o]

[o o]

[o i]] ;

c=[[I o o o]

[o o i o]];

%% Calculation of the integral from 0 to h in m steps %_

m=40; % number of points between interpolationpoints

toi=le-08; % the numeric error tolerance

Mtau(:,l:4)=zeros(4);

tau=O;

for j=l:m

oldtau=tau;

tau=oldtau+h/m;

Mtau(:,4.j+l:4.j+4)= quad8mod('int',oldtau,tau,tol)

+ Mtau(:,4*j-3:4*j);

end;

M=Mtau(:,4*m+!:4*m+4);



8 PROGR.AMS 35

_Z Forming of the Matrixes for the Blockdiagonal system _Z

e_Ah=expm(-A*h);

Minv=inv(M);

ZZ=Minv*e_Ah;

'.Z#=e_Ah'*ZZ+Minv;

WL= ['.Z4(2,2)

ZLU= [ZZ (2,2)

ZLL= [ZZ(2,2)

r_'(2,4); _(4,2) h_'(4,4)] ;

ZZ(2,4); ZZ(4,2) ZZ(4,4)];

zZ(4,2); ZZ(2,4) ZZ(4,4)];

% Partitioning matrixes

WR= [WW(2,1)

Z?.U= [ZZ(2, i)

ZRL= [ZZ(i,2)

'_(2,3); WW(4,1) '_/(4,3)];

ZZ(2,3); ZZ(4,1) ZZ(4,3)];

ZZ(3,2); ZZ(I,4) ZZ(3,4)];

Ulu=[Minv(2,2) Minv(2,4);Minv(4,2)

Uru=[Minv(2,1) Minv(4,!);Minv(2,3)

Vl=[!ambdal a!pha2; beta2 lambda2];

Vr=[O alphal; betal 0];

Minv(4,4)];

Minv(4,3)];

%_,_ Forming of the right side of the Blockdiagonal system _

for i=2:n

Omega(.,i)=ZRL,R(',i-I)-WR*R(',i)*ZRU*R(',i+I);

end;

0mega(-,1)=(Vr-Uru),R(.,1) + ZRU*R(',2);

0mega(:,n+l)=ZKL*R(:,n) - (WK-Uru+Vr)*R(:,n+I);

%% Gausselimination to produce upper triangular system %Z

DD(:,I:2)=UIu-VI;

for i=2:n+l

zd=ZLL*inv(DD(:,2*i-3:2*i-2));

DD(:,2*i-I:2*i)=WL-zd*ZLU;

Omega(:,i)=Omega(',i)+zd*Omega(:,i-l);

end

DD(:,2*n+l:2*n+2)= (WL-UIu+VI) - zd*ZLU;



o

8 PROGRAMS 36

%7. Backsubstitution to solve for the xvel 7.%

xvel(:,n+l)=DD(:,2*n+l:2*n+2)\Omega(:,n+l);

for i=n:-l:l

xve!(:,i)=DD(:,2*i-l:2*i)\(ZLU*xve!(:,i+l)*Cme_z(:,i));

end;

%% Making of state vectors 7.%

for i=O:n

x(:,i+l)=[[K(l,i+l)]

[xvel(l,i+l)]

[K(2,i+l)]

[xvel(2,i+!)]];

end;

7.% P!otzing of trajectory

%% and error estimate calculation

sumnorm=O;

hold on

for j=O:m

eAtau=expm(A*j*h/m);

for i=O:n-i

entry=eAtau,(x(.,i+l)+Mtau(:,4*j+!:4*j+4),Minv*

(e_Ah,x(:,i+2)-x(:,i_l)));

plot(entry(1),entry(3),'.')

if errorca!c "

sumnorm = sumnorm + dist(entry(1),entry(3),i,h);

end;

end;

end;

7.% Plotting of the control signals 7.7.

if ctrlsignal



8 PROGR_4MS 37

pause, clg

subplot(2,1,1) ,hold on

subplot(2,1,2) ,hold on

for i=O in-1

for j=O:m

cSignve c ( :,j+ !)=B' *expm (-A' _j *h/40 )*Minv*

(e_Ah*x( :,i_2)-x( :,i+l)) ;

end ;

subplot (2, I, !) ,plot(i'bib/m: (i+!)*h,csignvec(l, :))

subp!ot(2,1,2) ,plot(i*h:h/m: (i_!)*h, csignvec(2, :))

end;

end ;

error=sumnorm/n/m;

end;

function [Q,cnt] = quad8mod(F,a,b,tol)

ZAl_eration of the original matlab toolbox program. QUAD8

Numerical evaluation of an inzegr_a!, higher order method.

Q = QUAD8('F',A,B,TOL) approximates the integ-ral of F(X)

from A to B to within a relative error of TOL.

% 'F' is a string containing the name of the ftmction.

The function must return a 4*4-matrix output value if

% given an input value.

Q = Inf is returned if an excessive rectLrsion level is

reached, indicating a possibly singular integral.

QUAD8 uses an adaptive recursive Newton Cotes 8 panel rule.

Cleve Moler, 5-08-88.

% Copyright (c) 1984-94 by i_ne MathWorks, Inc.

% [Q,cnt] = quad8(F,a,b,tol) also returns a function

% evaluation count.

Top level initialization, Newton-Cotes weights

w=[3956 23552 -3712 41984 -18160 41984 -5712 23552 3956]/14175;

x=a + (0:8)*(b-a)/8;



8 PROGR.4MS 38

Y, set up function call

for i=x

y = [y feval(F,i)];

end ;

% Adaptive, recursive Newton-Cotes 8 panel quadrature

QO = zeros(4);

[Q,cn_] = quad8stpmod(F,a,b,toi,O,_,x,y,QO);

C_Z = cnt + 9;

end;

function [Q,cnt] = quad8stpmod(F,a,b,tol,lev,°;,xO,fO,QO)

Y.A_ze_atlon of the original mazlab toolbox program QUAD8STP

'/.Rec'__rsive function used by QUAD8

Y. [Q,cnz] = quad8stp(F,a,b,tol,!ev,';,f,QO) tries to approximate

'/.the integral of f(x) from a to b to within a relative error

Y. of -o!.

Y. F is a string containing the name of f. The remaining

Y. ar=_aments are generated by quadSmod or by the recursion.

Y. lev is the recursion level.

Y. _; is the weights in the 8 panel Newton Cotes formula.

Y. xO is a vector of 9 equally spaced abscissa is the interval.

Y. fO is a matrix of the 9 function values at x.

Y. QO is an approximate value of the integral.

Y. Cleve Moler, 5-08-88.

Y. Copyright (c) 1984-94 by The MathWorks, Inc.

LEVMAX = i0;

% Evaluate function at midpoints

% of left and right half intervals.

x = zeros(l,i7);

x(1:2:17) = xO;

x(2:2:16) = (x0(1:8) + x0(2:9))/2;

f(:,l:4): fO(:,l:4);

for i=!:8



8 PROGRAMS 39

f(:,8"i-3:8"i) = feval(F,x(2*i));

f(:,8.i+1:8.i+4) = f0(:,4-i+1:4.i÷4);

end;

Integrate over half intervals.

h = (b-a)/16;

QI=O;Q2=O;

for i=1:9

QI = Q1 + h,w(i)zf(:,4*i-3:4*i);

Q2 = Q2 + h*w(lO-i)_f(:,69-i*4:72-i*4);

end;

Q = Q1 ÷ Q2;

Kecursively refine approximations.

if norm(Q - QO) > tol*norm(Q) a lev <= LEVMAX

c = (a+b)/2;

[Ql,cntl] =

quadSstpmod(F,a,c,to!/2,1ev+!,_,x(l:9),f(',l:36),Ql);

[Q2,cnt2] =

quadSstpmod(F,c,b,tol/2,1ev+l,w,x(9:IZ),f(',33"68),Q2);

O = QI + Q2;

cnZ = cnt + cntl + cnt2;

end

end;

function res = integrand(v)

global A B C

e_AvB=expm(-A*v)*B;

res = e_AvB*e_AvB';

end;

function [d]=dist(xx,yy,i,h);

% Initiating search algorithm.



8 PROGR.4MS 41

8.2 Maple Program

with(linalg);
with(s_udent);

a!pha!:=!;

alpha2:=!;

betal:=O;

beta2:=O;

!ambdal:=lO0;

lambda2:=lO0;

a:=l;

b:=a;

h:=0.2;

n:=22;

m:=lS;

R:=vector(n+l);.

XX:=_->a*_*Pi-b*sin(t*Pi);

YY:=t->a-b*cos(t*Pi);

for i from 0 to n

do

K[i+l]:=matrix([[XX(-l+i*h)],

[YY(-l+i*h) ]] ) ;

od;

A:=matrix([[ O, 1, O, 0],

[ O, lambdal, alphal, alpha2],

[ O, O, O, 1],

[ betal, beta2, O, lambda2]]);

B :=matrix( [[0,0] ,[I,0] ,[0,0] ,[0, I] ]) ;

C :=matrix( [[i,0,0,0] ,[0,0,1,0]] ) ;

alias(Id = _*())

Aprim:=zranspose(A);

Bprim:=:ranspose(B);

e_At:=z->exponential(-A*t);



8 PROGtL4MS 42

e_Aprimt :=t->exponential (-Aprim*z) ;

eAt :=z->exponential (A.z) ;

e_Ah: =e_At (h) ;

inte_randen:= proc (v)

eva!m(e_At(v) _* B

end;

_* Bprim _* e_Aprimz(v));

in_eErera:= proc (funk)

global v;

ins(funk,v);

end;

zap(integrera,integranden(v));

inzegralen:--map(simplif7,");

evaluera:=proc (funk)

global tau;

subs(v=tau,funk);

end;

M_au:=vector(m+l);

M_au[l]:=matrix([[O,O,O,O],[O,O,O,O],[O,O,O,O],[O,O,O,O]]);

tau:=O;

MO:=evalm(map(evaluera,inZegrs_len));

for j from 1 to m

do

tau:=j*h/m;

Mtau[j+l]:=evalm(map(evaluera,integr_len)-MO);

od;

M:=MZau[m+l];

Minv:=evalm(inverse(M));

ZZ:=evalm(Minva*e_Ah);

W_:=evalm(transpose(e_Ah)_*ZZ+Minv);



8 PROGR.AMS 43

WL: =submatrix (WW, [2,4] ,[2,4] );

ZLU: =submatrix(ZZ, [2,4] ,[2,4] );

ZLL :=transpose (submatrix (ZZ, [2,4] ,[2,4] ));

W'K:=submatrix (WW, [2,4] ,[I,3]);

ZRU: =submazrlx(ZZ, [2,4] ,[1,3] );

ZKL:=transpose(submaCrix(ZZ, [I,3] ,[2,4])) ;

xvel :=vector (n+l) ;

xvel[l] :=evalm( (R [2]-R [!])/h) ;

xve! In+l] :=evalm( (K [n+!] -R[n] )/h) ;

Cmega: =vector(n+!) ;

for i from 2 to n

do

Omega [i] :=ZKL_*K [i-!] -WR_-*R[i]+ZKU_-*K[i+l] ;

od;

Jmega [2] :=Omega [2]+ZLL_*xve! [i];

Cmega In] :=Omega [n]+ZLU_.*xvel [n+l] ;

DD'=vector(n+l) ;

DD [2] =WL;

for i from 3 to n

do

zd: =eva!m(ZLL_*inverse (DD [i-l] ));

DD [i] •=WL-zda*ZLU;

8mega [i] •=Omega [i]+zd_*Omega [i-l] ;

od;

xvel [n] :=linsolve (DD In] ,Omega In]);

for i from n-i by -I to 2

do

xvel [i] •=linsolve (DD [i] ,ZLU_-_xvel [i+l]+Omega [i]);

od;

x'=vector(n+l);

for i from 0 to n



REFERENCES 44

do

x[i+l] :--matrix([[R[i+l] [I, I]] ,

[xvel[i+l] [i,I]],

[K[i+l] [2, I]],

[xvel[i+!] [2,I]] ]) ;

od;

plotlist :=[] ;

for j from 1 to m

do

tau :=j*h/m;

eAtau :=evalm(eAt (tau)) ;

for i from 0 to n-i

do

entry :=evalm(eAt au_-*(x [i+ 1]+Mtau [j+I] _*Minv

_, (e_Ah_*x [i+2]-x [i+l])));

plotlist :={ [entry [l,l] ,entry[3, I]] ,op(plotlist)};

od;

od;

plot(plotlist,style=poin_);

References

[1] Hildebrand, F. B. Introduction to Numerical .%malysis. New York: Dover

Publications, Inc. (1987).

[2] Kahaner, D., Moler, C., Nash_ S. Numerical Methods and Software. Ea-

glewood Cliffs: Prentice-Hall International, Inc. (1989).

[3] Faires J.D., Burden L.R. Numerical Methods. Boston: PWS-KENT Pub-

lishing Company (1993).

[4] Taylor A.E. Introduction to Fu.actional Analysis.New York: Wiley (1958).

[5] Selby S.M. CRC Standard Mathematical Tables. Cleveland: The Chem-

ical Rubber Co. (1972)




